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of the values of the primal and dual objective functions. Yet others stop simply
when no further improvement is made [398].

Before we develop a stopping criterion recall that ultimately we want to find a
solution f (x)� 
w�Φ(x)�� b that minimizes one of the regularized risk functionals
described below. In the case of classification,
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(10.3)

(the right half of the equations describes the analogous setting with the �-
parameter), similarly, for regression,
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This means that ultimately not the Lagrange multipliers �i but rather w, or only
the value of the primal objective function, matters. Thus, algorithms [266, 290,
291, 398] which rely on the assumption that proximity to the optimal parametersProximity in

Parameters ��
Proximity in
Solution

will ensure a good solution may not be using an optimal stopping criterion. In
particular, such a criterion may sometimes be overly conservative, especially if the
influence of individual parameters on the final estimate is negligible. For instance,
assume that we have a linear dependency in the dual objective function. Then
there exists a linear subspace of parameters which would all be suitable solutions,
leading to identical vectors w. Therefore, convergence within this subspace may
not occur and, even if it does, it would not be relevant to the quality of the solution.

What we would prefer to have is a way of bounding the distance between the
objective function at the current solution f and at fopt. Since (10.3) and (10.4) are
both constrained optimization problems we may make use of Theorem 6.27 and
lower bound the values of (10.3) and (10.4) via the KKT Gap. The advantage is
that we do not have to know the optimal value in order to assess the quality of the
approximate solution. The following Proposition formalizes this connection.

Proposition 10.1 (KKT-Gap for Support Vector Machines) Denote by f the (possi-
bly not optimal) estimate obtained during a minimizing procedure of the optimization
problem (10.3) or (10.4) derived from the regularized risk functional Rreg[ f ]. Further, de-
note by f* the minimizer of Rreg[ f ]. Then under the condition of dual feasible variables
(namely that the equality and box constraints are satisfied), the following inequality holds:

Rreg[ f ] � Rreg[ f �] � Rreg[ f ]�
1

Cm
Gap[ f ] (10.5)

where Gap[ f ] is defined as follows:


