Regression Estimation

can only be achieved by defining new kernels as linear combinations of differently scaled kernels. This is due to the fact that once a regularization operator is chosen, the solution minimizing the regularized risk function has to expanded into the corresponding Green's functions of P^*P (Chapter 4). In these cases, a possible way out is to resort to the LP version (Section 9.4). A final area of research left out of this chapter is the problem of estimating the values of functions at given test points, sometimes referred to as transduction [103].

9.8 Problems

9.1 (Product of SVR Lagrange Multipliers [561] •) *Show that for* $\varepsilon > 0$ *, the solution of the SVR dual problem satisfies*

$$\alpha_i \alpha_i^* = 0$$

(9.58)

for all i = 1, ..., m. Prove it either directly from (9.17), or from the KKT conditions.

Show that for $\varepsilon = 0$, we can always find a solution which satisfies (9.58) and which is optimal, by subtracting min{ α_i, α_i^* } from both multipliers.

Give a mechanical interpretation of this result, in terms of forces on the SVs (cf. Chapter 7).

9.2 (SV Regression with Fewer Slack Variables ••) *Prove geometrically that in SV regression, we always have* $\xi_i \xi_i^* = 0$. Argue that it is therefore sufficient to just introduce slacks ξ_i and use them in both (9.9) and (9.10). Derive the dual problem and show that it is identical to (9.17) except for a modified constraint $0 \le \alpha_i + \alpha_i^* \le C$. Using the result of *Problem 9.1, prove that this problem is equivalent to* (9.10).

Hint: although the number of slacks is half of the original quantity, you still need both α_i and α_i^* to deal with the constraints.

9.3 (ν -Property from the Primal Objective Function •) *Try* to understand the ν -property from the primal objective function (9.31). Assume that at the point of the solution, $\varepsilon > 0$, and set $(\partial/\partial \varepsilon)\tau(\mathbf{w}, \varepsilon)$ equal to 0.

9.4 (One-Sided Regression ••) Consider a situation where you are seeking a flat function that lies above all of the data points; that is, a regression that only measures errors in one direction. Formulate an SV algorithm by starting with the linear case and later introducing kernels. Generalize to the soft margin case, using the ν -trick. Discuss the applicability of such an algorithm. Also discuss how this algorithm is related to ν -SVR using different values of ν for the two sides of the tube.

9.5 (Basis Pursuit ••) *Formulate a basis pursuit variant of SV regression, where, starting from zero, SVs are added iteratively in a greedy way (cf.* [577]).

9.6 (SV Regression with Hard Constraints •) *Derive dual programming problems for variants of* ε *-SVR and* ν *-SVR where all points are required to lie inside the* ε *-tubes (in*

274