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can only be achieved by defining new kernels as linear combinations of differently
scaled kernels. This is due to the fact that once a regularization operator is cho-
sen, the solution minimizing the regularized risk function has to expanded into
the corresponding Green'’s functions of P*P (Chapter 4). In these cases, a possible
way out is to resort to the LP version (Section 9.4). A final area of research left out
of this chapter is the problem of estimating the values of functions at given test
points, sometimes referred to as transduction [103].

9.8 Problems

_ Scholkopf and Smola: Learning with Kernels

9.1 (Product of SVR Lagrange Multipliers [561] o) Show that for € > 0, the solution
of the SVR dual problem satisfies

aia; =0 (9.58)

foralli=1,... m.Prove it either directly from (9.17), or from the KKT conditions.
Show that for € = 0, we can always find a solution which satisfies (9.58) and which is
optimal, by subtracting min{ oy, o} from both multipliers.
Give a mechanical interpretation of this result, in terms of forces on the SVs (cf.
Chapter 7).

9.2 (SV Regression with Fewer Slack Variables ee) Prove geometrically that in SV
regression, we always have §;§; = 0. Argue that it is therefore sufficient to just introduce
slacks &; and use them in both (9.9) and (9.10). Derive the dual problem and show that it
is identical to (9.17) except for a modified constraint 0 < «; + o < C. Using the result of
Problem 9.1, prove that this problem is equivalent to (9.10).

Hint: although the number of slacks is half of the original quantity, you still need both
o and o to deal with the constraints.

9.3 (v-Property from the Primal Objective Function o) Try to understand the v-
property from the primal objective function (9.31). Assume that at the point of the solution,
e > 0, and set (0/0e)7(w,€) equal to 0.

9.4 (One-Sided Regression ee) Consider a situation where you are seeking a flat func-
tion that lies above all of the data points; that is, a regression that only measures errors
in one direction. Formulate an SV algorithm by starting with the linear case and later
introducing kernels. Generalize to the soft margin case, using the v-trick. Discuss the ap-
plicability of such an algorithm. Also discuss how this algorithm is related to v-SVR using
different values of v for the two sides of the tube.

9.5 (Basis Pursuit ee) Formulate a basis pursuit variant of SV regression, where, start-
ing from zero, SVs are added iteratively in a greedy way (cf. [577]).

9.6 (SV Regression with Hard Constraints e) Derive dual programming problems for
variants of e-SVR and v-SVR where all points are required to lie inside the e-tubes (in
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