252

Regression Estimation

9.1 Linear Regression 2 Kernels

4 Regularization

6 Optimization

‘ 9.6 Applications with e—insensitive loss

) 9.2 Dual Formulations
‘ 9.3 v—Regression of SV Regression

9.5 Parametric
Insensitivity Models

9.4 Convex Combinations
and 1-norms

which does not penalize errors below some ¢ > 0, chosen a priori.1 The rationale
behind this choice is the following. In pattern recognition, when measuring the
loss incurred for a particular pattern, there is a large area where we accrue zero
loss: whenever a pattern is on the correct side of the decision surface, and does
not touch the margin, it does not contribute any loss to the objective function
(7.35). Correspondingly, it does not carry any information about the position of
the decision surface — after all, the latter is computed by minimizing that very
objective function. This is the underlying reason why the pattern does not appear
in the SV expansion of the solution. A loss function for regression estimation must
also have an insensitive zone; hence we use the e-insensitive loss.

The regression algorithm is then developed in close analogy to the case of
pattern recognition. Again, we estimate linear functions, use a ||w||? regularizer,
and rewrite everything in terms of dot products to generalize to the nonlinear case.
The basic SV regression algorithm, which we will henceforth call e-SVR, seeks to
estimate linear functions?,

f(x) = (w,Xx) +b, wherew,x € H,b € R, 9.2
based on independent and identically distributed (iid) data,
(X1,¥1)s - - s Xm, Ym) € H x R. (9.3)

Here, 3 is a dot product space in which the (mapped) input patterns live (i.e., the
feature space induced by a kernel). The goal of the learning process is to find a

1. The insensitive zone is sometimes referred to as the e-tube. Actually, this term is slightly
misleading, as in multi-dimensional problems, the insensitive zone has the shape of a slab
rather than a tube; in other words, the region between two parallel hyperplanes, differing
in their y offset.

2. Strictly speaking, these should be called affine functions. We will not indulge in these fine
distinctions. The crucial bit is that the part to which we apply the kernel trick is linear.

Scholkopf and Smola: Learning with Kernels 2001/09/08 18:59



