8.7 Experiments

Combinatorial
Problem

Kernel-Based
Vector
Quantization

243

outliers.

Given v € (0,1], the resulting algorithm computes (8.6) subject to (8.7), and
thereby constructs a region R such that for OL = {i : x; € R}, we have % <v.
The “<” is sharp in the sense that if we multiply the solution w by (1 — €) (with
e > 0), it becomes a “>.” The algorithm does not solve the following combinatorial
problem, however: given v € (0, 1], compute

R AT
minimize = |jw||%,
weH,0LC[m] 2
oL |
— =V

m
Ben-David et al. [31] analyze a problem related to (8.38): they consider a sphere
(which for some feature spaces is equivalent to a half-space, as shown in Sec-
tion 8.3), fix its radius, and attempt to find its center such that it encloses as many
points as possible. They prove that it is already NP hard to approximate the maxi-
mal number to within a factor smaller than 3/418.

We conclude this section by mentioning another kernel-based algorithm that
has recently been proposed for the use on unlabelled data [541]. This algorithm
applies to vector quantization, a standard process which finds a codebook such
that the training set can be approximated by elements of the codebook with small
error. Vector quantization is briefly described in Example 17.2 below; for further
detail, see [195].

Given some metric d, the kernel-based approach of [541] uses a kernel that
indicates whether two points lie within a distance R > 0 of each other,

subject to (w, ®(x;)) > 1fori e [m]\ OL and (8.38)

k(X, X,) = I{(x,x’)EDCxDC:d(x,x’)gR}~ (839)

Let @, be the empirical kernel map (2.56) with respect to the training set. The main
idea is that if we can find a vector a € R™ such that

a'®y(x) >0 (8.40)

holds true for all i = 1,..., m, then each point x; lies within a distance R of some
point x; which has a positive weight o; > 0. To see this, note that otherwise all
nonzero components of a would get multiplied by components of ®,, which are
0, and the dot product in (8.40) would equal 0.

To perform vector quantization, we can thus use optimization techniques, which
produce a vector « that satisfies (8.40) while being sparse. As in Section 7.7, this
can be done using linear programming techniques. Once optimization is complete,
the nonzero entries of a indicate the codebook vectors.

8.7 Experiments

We apply the method to artificial and real-world data. Figure 8.6 shows a compar-
ison with a Parzen windows estimator on a 2-D problem, along with a family of

Scholkopf and Smola: Learning with Kernels 2001/09/08 18:59

