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Also prove that

��2
� 2W(�)� w2� (7.69)

Note that for these relations to hold true, � needs to be the solution of (7.29).

7.4 (Relationship Between w and the Geometrical Margin �) (i) Consider a sep-
arating hyperplane in canonical form. Prove that the margin, measured perpendicularly to
the hyperplane, equals 1�w, by considering two opposite points which precisely satisfy
� 
w� xi�� b� � 1.

(ii) How does the corresponding statement look for the case of �-SVC? Use the con-
straint (7.41), and assume that all slack variables are 0.

7.5 (Compression Bound for Large Margin Classification ÆÆÆ) Formalize the ideas
stated in Section 7.2: Assuming that the data are separable and lie in a ball of radius R,
how many bits are necessary to encode the labels of the data by encoding the parameters
of a hyperplane? Formulate a generalization error bound in terms of the compression ratio
by using the analysis of Vapnik [561, Section 4.6]. Compare the resulting bound with
Theorem 7.3. Take into account the eigenvalues of the Gram matrix, using the ideas from 
[604] (cf. Section 12.4).  Cf. von Luxburg et al., TR 101, MPI for Biological Cybernetics.

7.6 (Positive Definiteness of the SVC Hessian �) From Definition 2.4, prove that the
matrix Qi j :� (yiy jk(xi� xj))i j is positive definite.

7.7 (Geometric Interpretation of Duality in SVC [38] ��) Prove that the program-
ming problem (7.10), (7.11) has the same solution as (7.22), provided the threshold b is
adjusted such that the hyperplane bisects the shortest connection of the two convex hulls.
Hint: Show that the latter is the dual of the former. Interpret the result geometrically.

7.8 (Number of Points Required to Define a Hyperplane �) From (7.22), argue that
no matter what the dimensionality of the space, there can always be situations where two
training points suffice to determine the optimal hyperplane.

7.9 (In-Bound SVs in Soft Margin SVMs �) Prove that in-bound SVs lie exactly on
the margin. Hint: Use the KKT conditions, and proceed analogously to Section 7.3, where
it was shown that in the hard margin case, all SVs lie exactly on the margin.

Argue, moreover, that bound SVs can lie both on or in the margin, and that they will
“usually” lie in the margin.

7.10 (Pattern-Dependent Regularization �) Derive a version of the soft margin classi-
fication algorithm which uses different regularization constants Ci for each training exam-
ple. Start from (7.35), replace the second term by 1

m ∑m
i�1 Ci�i, and derive the dual. Discuss

both the mathematical form of the result, and possible applications (cf. [462]).

7.11 (Uncertain Labels ��) In this chapter, we have been concerned mainly with the case
where the patterns are assigned to one of two classes, i.e., y � ��1�. Consider now the


