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Vectors xj for which � j � 0, we have (7.31). Thus, the threshold can be obtained by
averaging (7.32) over all Support Vectors x j (recall that they satisfy � j � 0) with
� j 	 C.

In the above formulation, C is a constant determining the trade-off between
two conflicting goals: minimizing the training error, and maximizing the margin.
Unfortunately, C is a rather unintuitive parameter, and we have no a priori way
to select it.9 Therefore, a modification was proposed in [481], which replaces C by
a parameter �; the latter will turn out to control the number of margin errors and�-SVC
Support Vectors.

As a primal problem for this approach, termed the �-SV classifier, we consider
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subject to yi(
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and �i � 0� � � 0� (7.42)

Note that no constant C appears in this formulation; instead, there is a parameter
�, and also an additional variable � to be optimized. To understand the role of
�, note that for � � 0, the constraint (7.41) simply states that the two classes are
separated by the margin 2��
w
 (cf. Problem 7.4).

To explain the significance of �, let us first recall the term margin error: by this,Margin Error
we denote points with �i � 0. These are points which are either errors, or lie within
the margin. Formally, the fraction of margin errors is
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Here,  g is used to denote the argument of the sgn in the decision function (7.25):
f � sgn Æ g  (see footnote 5, p. 344). We are now in a position to state a result that
explains the significance of �.�-Property

Proposition 7.5 ([481]) Suppose we run �-SVC with k on some data with the result that
� � 0. Then

(i) � is an upper bound on the fraction of margin errors.

(ii) � is a lower bound on the fraction of SVs.

(iii) Suppose the data (x1� y1)� � � � � (xm� ym) were generated iid from a distribution
P(x� y)� P(x)P(y�x), such that neither P(x� y � 1) nor P(x� y � �1) contains any dis-
crete component. Suppose, moreover, that the kernel used is analytic and non-constant.
With probability 1, asymptotically, � equals both the fraction of SVs and the fraction of
errors.

The proof can be found in Section A.2.
Before we get into the technical details of the dual derivation, let us take a look

9. As a default value, we use C�m� 10 unless stated otherwise.


