Pattern Recognition

examples, and train on the remaining ones, then the probability of error on the left out example gives us a fair indication of the true test error. Of course, doing this for a single training example leads to an error of either zero or one, so it does not yet give an estimate of the test error. The leave-one-out method *repeats* this procedure for each individual training example in turn, and averages the resulting errors.

Let us return to the present case. If we leave out a pattern \mathbf{x}_{i^*} , and construct the solution from the remaining patterns, the following outcomes are possible (cf. (7.11)):

1. $y_{i^*}(\langle \mathbf{x}_{i^*}, \mathbf{w} \rangle + b) > 1$. In this case, the pattern is classified correctly and does not lie on the margin. These are patterns that would not have become SVs anyway.

2. $y_{i^*}(\langle \mathbf{x}_{i^*}, \mathbf{w} \rangle + b) = 1$. In other words, \mathbf{x}_{i^*} exactly meets the constraint (7.11). In this case, the solution \mathbf{w} does not change, even though the coefficients α_i would change: Namely, if \mathbf{x}_{i^*} might have become a Support Vector (i.e., $\alpha_{i^*} > 0$) had it been kept in the training set. In that case, the fact that the solution is the same, no matter whether \mathbf{x}_{i^*} is in the training set or not, means that \mathbf{x}_{i^*} can be written as $\sum_{SVs} \beta_i y_i \mathbf{x}_i$ with, $\beta_i \ge 0$. Note that condition 2 is *not* equivalent to saying that \mathbf{x}_{i^*} may be written as some linear combination of the remaining Support Vectors: Since the sign of the coefficients in the linear combination is determined by the class of the respective pattern, not any linear combination will do. Strictly speaking, \mathbf{x}_{i^*} must lie in the cone spanned by the $y_i \mathbf{x}_i$, where the \mathbf{x}_i are all Support Vectors.⁶ For more detail, see [565] and Section 12.2.

3. $0 < y_{i^{*}} (\langle \mathbf{x}_{i^{*}}, \mathbf{w} \rangle + b) < 1$. In this case, $\mathbf{x}_{i^{*}}$ lies within the margin, but still on the correct side of the decision boundary. Thus, the solution looks different from the one obtained with $\mathbf{x}_{i^{*}}$ in the training set (in that case, $\mathbf{x}_{i^{*}}$ would satisfy (7.11) after training); classification is nevertheless correct.

4. $y_{i^*}(\langle \mathbf{x}_{i^*}, \mathbf{w} \rangle + b) < 0$. This means that \mathbf{x}_{i^*} is classified incorrectly.

Note that cases 3 and 4 necessarily correspond to examples which would have become SVs if kept in the training set; case 2 potentially includes such situations. Only case 4, however, leads to an error in the leave-one-out procedure. Consequently, we have the following result on the generalization error of optimal margin classifiers [570]:⁷

Leave-One-Out**Proposition 7.4** The expectation of the number of Support Vectors obtained during train-
ing on a training set of size m, divided by m, is an upper bound on the expected proba-
bility of test error of the SVM trained on training sets of size $m - 1.^8$

198

^{6.} Possible non-uniqueness of the solution's expansion in terms of SVs is related to zero Eigenvalues of $(y_i y_j k(x_i, x_j))_{ij}$, cf. Proposition 2.16. Note, however, the above caveat on the distinction between linear combinations, and linear combinations with coefficients of fixed sign.

^{7.} It also holds for the generalized versions of optimal margin classifiers described in the following sections.

^{8.} Note that the leave-one-out procedure performed with *m* training examples thus yields