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The next step will be to summarize the main behavior of the growth function
with a single number. If � is as rich as possible, so that for any sample of size m,
the points can be chosen such that by using functions of the learning machine, they
can be separated in all 2m possible ways (i.e., they can be shattered), then

G�(m)� m � ln(2)� (5.45)

In this case, the convergence (5.44) does not take place, and learning will not
generally be successful. What about the other case? Vapnik and Chervonenkis
[567, 568] showed that either (5.45) holds true for all m, or there exists some
maximal m for which (5.45) is satisfied. This number is called the VC dimensionVC Dimension
and is denoted by h. If the maximum does not exist, the VC dimension is said to
be infinite.
By construction, the VC dimension is thus the maximal number of points which
can be shattered by functions in �. It is possible to prove that for m � h [568],

G�(m) � h
�
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m
h
� 1

�
� (5.46)

This means that up to m � h, the growth function increases linearly with the
sample size. Thereafter, it only increases logarithmically, i.e., much more slowly.
This is the regime where learning can succeed.

Although we do not make use of it in the present chapter, it is worthwhile to
also introduce the VC dimension of a class of real-valued functions � fw�w � Λ� at this
stage. It is defined to equal the VC dimension of the class of indicator functions,

sgn ( fw � �)�w � Λ� � �
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In summary, we get a succession of capacity concepts,

H�(m) � Hann
� (m) � G�(m) � h

�
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�
� (5.48)

From left to right, these become less precise. The entropies on the left are
distribution-dependent, but rather difficult to evaluate (see, e.g., [430, 391]). The
growth function and VC dimension are distribution-independent. This is less ac-
curate, and does not always capture the essence of a given problem, which might
have a much more benign distribution than the worst case; on the other hand, we
want the learning machine to work for unknown distributions. If we knew the
distribution beforehand, then we would not need a learning machine anymore.

Let us look at a simple example of the VC dimension. As a function class, weVC Dimension
Example consider hyperplanes in �2 , i.e.,

f (x)� sgn (a� b[x]1� c[x]2)� with parameters a� b� c � �� (5.49)

Suppose we are given three points x1� x2� x3 which are not collinear. No matter
how they are labelled (that is, independent of our choice of y1� y2� y3 � ��1�), we
can always find parameters a� b� c � � such that f (xi)� yi for all i (see Figure 1.4 in
the introduction). In other words, there exist three points that we can shatter. This


