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where the expectation is taken over the random drawing of Z2m. The last step is to
combine this with Lemma 5.4, to obtain
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We conclude that provided E [�(�� Z2m)] does not grow exponentially in m (i.e.,Inequality of
Vapnik-
Chervonenkis
Type

ln E [�(�� Z2m)] grows sublinearly), it is actually possible to make nontrivial state-
ments about the test error of learning machines.

The above reasoning is essentially the VC style analysis. Similar bounds can
be obtained using a strategy which is more common in the field of empirical
processes, first proving that sup f (R[ f ]� Remp[ f ]) is concentrated around its mean
[554, 14].

5.5.5 Confidence Intervals

It is sometimes useful to rewrite (5.35) such that we specify the probability with
which we want the bound to hold, and then get the confidence interval, which
tells us how close the risk should be to the empirical risk. This can be achieved by
setting the right hand side of (5.35) equal to some Æ � 0, and then solving for �. As
a result, we get the statement that with a probability at least 1� Æ,Risk Bound
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Note that this bound holds independent of f ; in particular, it holds for the function
f m minimizing the empirical risk. This is not only a strength, but also a weakness
in the bound. It is a strength since many learning machines do not truly minimize
the empirical risk, and the bound thus holds for them, too. It is a weakness since by
taking into account more information on which function we are interested in, one
could hope to get more accurate bounds. We will return to this issue in Section 12.1.

Bounds like (5.36) can be used to justify induction principles different from the
empirical risk minimization principle. Vapnik and Chervonenkis [569, 559] pro-
posed minimizing the right hand side of these bounds, rather than just the em-

pirical risk. The confidence term, in the present case,
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then ensures that the chosen function, denoted f�, not only leads to a small risk,
but also comes from a function class with small capacity.

The capacity term is a property of the function class �, and not of any individ-
ual function f . Thus, the bound cannot simply be minimized over choices of f .
Instead, we introduce a so-called structure on �, and minimize over the elements
of the structure. This leads to an induction principle called structural risk minimiza-
tion. We leave out the technicalities involved [559, 136, 562]. The main idea isStructural Risk

Minimization depicted in Figure 5.3.


