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pattern recognition problem with xi =/ xj for i =/ j, we could set

f (x)�

�
yi if x � xi for some i � 1� � � � �m

1 otherwise.
(5.4)

This does not amount to any form of learning, however: suppose we are now given
a test point drawn from the same distribution, ( x� y) # P( x� y). If � is a continuous
domain, and we are not in a degenerate situation, the new pattern x will almost
never be exactly equal to any of the training inputs xi. Therefore, the learning
machine will almost always predict that y � 1. If we allow all functions from � to �,
then the values of the function at points x1� � � � � xm carry no information about the values
at other points. In this situation, a learning machine cannot do better than chance.
This insight lies at the core of the so-called No-Free-Lunch Theorem popularized in
[608]; see also [254, 48].

The message is clear: if we make no restrictions on the class of functions from
which we choose our estimate f , we cannot hope to learn anything. Consequently,
machine learning research has studied various ways to implement such restric-
tions. In statistical learning theory, these restrictions are enforced by taking into
account the complexity or capacity (measured by VC dimension, covering numbers,
entropy numbers, or other concepts) of the class of functions that the learning ma-
chine can implement.1

In the Bayesian approach, a similar effect is achieved by placing prior distribu-
tions P( f ) over the class of functions (Chapter 16). This may sound fundamentally
different, but it leads to algorithms which are closely related; and on the theoretical
side, recent progress has highlighted intriguing connections [92, 91, 353, 238].

5.2 The Law of Large Numbers

Let us step back and try to look at the problem from a slightly different angle.
Consider the case of pattern recognition using the misclassification loss function.
Given a fixed function f , then for each example, the loss �i :� 1

2 � f (xi) � yi� is either

1. As an aside, note that the same problem applies to training on the test set (sometimes
called data snooping): sometimes, people optimize tuning parameters of a learning machine
by looking at how they change the results on an independent test set. Unfortunately, once
one has adjusted the parameter in this way, the test set is not independent anymore. This
is identical to the corresponding problem in training on the training set: once we have
chosen the function to minimize the training error, the latter no longer provides an unbiased
estimate of the test error. Overfitting occurs much faster on the training set, however, than
it does on the test set. This is usually due to the fact that the number of tuning parameters
of a learning machine is much smaller than the total number of parameters, and thus the
capacity tends to be smaller. For instance, an SVM for pattern recognition typically has two
tuning parameters, and optimizes m weight parameters (for a training set size of m). See
also Problem 5.3 and [461].


