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how accurate our measurements were in the first place — the model would suffer
from a large variance. A related dichotomy is the one between estimation error and
approximation error. If we use a small class of functions, then even the best possible
solution will poorly approximate the “true” dependency, while a large class of
functions will lead to a large statistical estimation error.

In the terminology of applied machine learning and the design of neural net-
works, the complex explanation shows overfitting, while an overly simple expla-Overfitting
nation imposed by the learning machine design would lead to underfitting. A great
deal of research has gone into clever engineering tricks and heuristics; these are
used, for instance, to aid in the design of neural networks which will not overfit
on a given data set [397]. In neural networks, overfitting can be avoided in a num-
ber of ways, such as by choosing a number of hidden units that is not too large, by
stopping the training procedure early in order not to enforce a perfect explanation
of the training set, or by using weight decay to limit the size of the weights, and
thus of the function class implemented by the network.

Statistical learning theory provides a solid mathematical framework for study-
ing these questions in depth. As mentioned in Chapters 1 and 3, it makes the as-
sumption that the data are generated by sampling from an unknown underlying
distribution  P( x� y). The learning problem then consists in minimizing the risk (orRisk
expected loss on the test data, see Definition 3.3),
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c( x� y� f ( x))  dP( x� y)� (5.2)

Here, c is a loss function. In the case of pattern recognition, where � � ��1�, a
common choice is the misclassification error, c(x� y� f (x))� 1

2 � f (x) � y�.
The difficulty of the task stems from the fact that we are trying to minimize a

quantity that we cannot actually evaluate: since we do not know P, we cannot
compute the integral (5.2). What we do know, however, are the training data (5.1),
which are sampled from P. We can thus try to infer a function  f from the training
sample that is, in some sense, close to the one minimizing (5.2). To this end, we
need what is called an induction principle.

One way to proceed is to use the training sample to approximate the integral in
(5.2) by a finite sum (see (B.18)). This leads to the empirical risk (Definition 3.4),Empirical Risk
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c(xi� yi� f (xi))� (5.3)

and the empirical risk minimization (ERM) induction principle, which recommends
that we choose an f that minimizes (5.3).

Cast in these terms, the fundamental trade-off in learning can be stated as
follows: if we allow f to be taken from a very large class of functions �, we can
always find an f that leads to a rather small value of (5.3). For instance, if we allow
the use of all functions f mapping �� � (in compact notation, � � ��), then we
can minimize (5.3) yet still be distant from the minimizer of (5.2). Considering a


