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126 Elements of Statistical Learning Theory
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(an Example)
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a VC Bound

5.5.1 Union Bound

5.5.2 Symmetrization

5.5.4, 5.5.5 VC Bounds

5.5.6 Capacity Concepts

5.3, 5.4 Consistency and
Uniform Convergence

5.2 Law of
Large Numbers

where for simplicity we take � � � � �. Figure 5.1 shows a plot of such a dataset,Regression
Example along with two possible functional dependencies that could underlie the data. The

dashed line represents a fairly complex model, and fits the training data perfectly.
The straight line, on the other hand, does not completely “explain” the data, in
the sense that there are some residual errors; it is much “simpler,” however. A
physicist measuring these data points would argue that it cannot be by chance
that the measurements almost lie on a straight line, and would much prefer to
attribute the residuals to measurement error than to an erroneous model. But is it
possible to characterize the way in which the straight line is simpler, and why this
should imply that it is, in some sense, closer to an underlying true dependency?

In one form or another, this issue has long occupied the minds of researchers
studying the problem of learning. In classical statistics, it has been studied as the
bias-variance dilemma. If we computed a linear fit for every data set that we everBias-Variance

Dilemma encountered, then every functional dependency we would ever “discover” would
be linear. But this would not come from the data; it would be a bias imposed by
us. If, on the other hand, we fitted a polynomial of sufficiently high degree to any
given data set, we would always be able to fit the data perfectly, but the exact
model we came up with would be subject to large fluctuations, depending on
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Figure 5.1 Suppose we want to estimate a
functional dependence from a set of examples
(black dots). Which model is preferable? The
complex model perfectly fits all data points,
whereas the straight line exhibits residual er-
rors. Statistical learning theory formalizes the
role of the complexity of the model class, and
gives probabilistic guarantees for the validity
of the inferred model.


