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performance. It seems as if kernel methods are defying the curse of dimensionality
[29], which requires the number of samples to increase with the dimensionality of
the space in which estimation is performed. However, the distribution of capacity
in these spaces is not isotropic (cf. Section 2.2.5).

The basic idea of the viewpoint described in the present section is simple: ratherRegularization
Operator
Viewpoint

than dealing with an abstract quantity such as an RKHS, which is defined by
means of its corresponding kernel k, we take the converse approach of obtaining
a kernel via the corresponding Hilbert space. Unless stated otherwise, we will use
L2(�) as the Hilbert space (cf. Section B.3) on which the regularization operators
will be defined. Note that  L2(�) is  not the feature space �.

Recall that in Section 2.2.2, we showed that one way to think of the kernel
mapping is as a map that takes a point  x � � to a function  k( x� �) living in an
RKHS. To do this, we constructed a dot product 
�� ��

�
satisfying

k( x� x �)� 
k( x� �)� k( x' � �)�
�
� (4.15)

Physically, however, it is still unclear what the dot product 
 f � g�� actually does.
Does it compute some kind of “overlap” of the functions, similar to the usual
dot product between functions in L2(�)? Recall that, assuming we can define an
integral on �, the latter is (cf. (B.60))


 f � g�L2(�) �

�
�

f � g� (4.16)

In the present section, we will show that whilst our dot product in the RKHS isMain Idea
not quite a simple as (4.16), we can at least write it as


 f � g�
�
� 
ϒ f �ϒg�L2

�

�
�

ϒ f (x)ϒg(x)dx (4.17)

in a suitable L2 space of functions. This space contains transformed versions of the
original functions, where the transformation ϒ “extracts” those parts that should
be affected by the regularization. This gives a much clearer physical understand-
ing of the dot product in the RKHS (and thus of the similarity measure used by
SVMs). It becomes particularly illuminating once one sees that for common ker-
nels, the associated transformation ϒ extracts properties like derivatives of func-
tions. In other words, these kernels induce a form of regularization that penalizes
non-smooth functions.

Definition 4.8 (Regularization Operator) A regularization operator ϒ is defined as a
linear map from the space of functions � :� � f � f : �� �� into a space equipped with a
dot product. The regularization term Ω[ f ] takes the form

Ω[ f ] :�
1
2

ϒ f �ϒ f � � (4.18)

Without loss of generality, we may assume that ϒ is positive definite. This can bePositive Definite
Operator seen as follows: all that matters for the definition of Ω[ f ] is the positive definite

operator ϒ�ϒ (since 
ϒ f �ϒ f �� 
 f �ϒ�ϒ f �). Hence we may always define a positive
definite operator ϒh :� (ϒ�ϒ)

1
2 (cf. Section B.2.2) which has the same regulariza-


