36	Kernels	
RKHS	In view of the properties (2.29) and (2.30), this space is usually called a <i>reproducing kernel Hilbert space (RKHS)</i> . In general, an RKHS can be defined as follows.	8
	Definition 2.9 (Reproducing Kernel Hilbert Space) Let \mathfrak{X} be a nonempty set (often called the index set) and \mathfrak{H} a Hilbert space of functions $f: \mathfrak{X} \to \mathbb{R}$. Then \mathfrak{H} is called a reproducing kernel Hilbert space endowed with the dot product $\langle \cdot, \cdot \rangle$ (and the norm $ f := \sqrt{\langle f, f \rangle}$) if there exists a function $k: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}$ with the following properties.	ł
Reproducing Property	1. k has the reproducing property ³	
	$\langle f, k(x, \cdot) \rangle = f(x) \text{ for all } f \in \mathcal{H};$ (2.34)	.)
	in particular,	
	$\langle k(x,\cdot), k(x',\cdot) \rangle = k(x,x'). \tag{2.35}$;)
Closed Space	2. <i>k</i> spans \mathcal{H} , <i>i.e.</i> $\mathcal{H} = \overline{\text{span}\{k(x, \cdot) x \in \mathcal{X}\}}$ where \overline{X} denotes the completion of the set X (cf. Appendix B).	K
Uniqueness of <i>k</i>	On a more abstract level, an RKHS can be defined as a Hilbert space of functions f on \mathcal{X} such that all evaluation functionals (the maps $f \mapsto f(x')$, where $x' \in \mathcal{X}$) are continuous. In that case, by the Riesz representation theorem (e.g., [429]), for each $x' \in \mathcal{X}$ there exists a unique function of x , called $k(x, x')$, such that	e
	$f(x') = \langle f, k(., x') \rangle . \tag{2.36}$	5)
	It follows directly from (2.35) that $k(x, x')$ is symmetric in its arguments (see Problem 2.28) and satisfies the conditions for positive definiteness. Note that the RKHS uniquely determines k . This can be shown by contradiction assume that there exist two kernels, say k and k' , spanning the same RKHS \mathcal{H} From Problem 2.28 we know that both k and k' must be symmetric. Moreover from (2.34) we conclude that	n: (.
	$\langle k(x,\cdot), k'(x',\cdot) \rangle_{\mathcal{H}} = k(x,x') = k'(x',x). $ (2.37)	')
	In the second equality we used the symmetry of the dot product. Finally, symmetry in the arguments of k yields $k(x, x') = k'(x, x')$ which proves our claim.	,
	2.2.4 The Mercer Kernel Map	
	Section 2.2.2 has shown that any positive definite kernel can be represented as a	a

Section 2.2.2 has shown that any positive definite kernel can be represented as a dot product in a linear space. This was done by explicitly constructing a (Hilbert) space that does the job. The present section will construct another Hilbert space.

^{3.} Note that this implies that each $f \in \mathcal{H}$ is actually a single function whose values at any $x \in \mathcal{X}$ are well-defined. In contrast, L_2 Hilbert spaces usually do not have this property. The elements of these spaces are equivalence classes of functions that disagree only on sets of measure 0; cf. footnote 15 in Section B.3.