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1.3 Some Insights From Statistical Learning Theory 9
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The risk can be defined for any loss function, provided the integral exists. For the
present zero-one loss function, the risk equals the probability of misclassification.7

Statistical learning theory (Chapter 5, [570, 559, 561, 136, 562, 14]), or VC
(Vapnik-Chervonenkis) theory, shows that it is imperative to restrict the set of
functions from which f is chosen to one that has a capacity suitable for the amountCapacity
of available training data. VC theory provides bounds on the test error. The min-
imization of these bounds, which depend on both the empirical risk and the ca-
pacity of the function class, leads to the principle of structural risk minimization
[559].

The best-known capacity concept of VC theory is the VC dimension, defined asVC dimension
follows: each function of the class separates the patterns in a certain way and thus
induces a certain labelling of the patterns. Since the labels are in ��1�, there are
at most 2m different labellings for m patterns. A very rich function class might be
able to realize all 2m separations, in which case it is said to shatter the m points.Shattering
However, a given class of functions might not be sufficiently rich to shatter the
m points. The VC dimension is defined as the largest m such that there exists a
set of m points which the class can shatter, and � if no such m exists. It can be
thought of as a one-number summary of a learning machine’s capacity (for an
example, see Figure 1.4). As such, it is necessarily somewhat crude. More accurate
capacity measures are the annealed VC entropy or the growth function. These are
usually considered to be harder to evaluate, but they play a fundamental role in
the conceptual part of VC theory. Another interesting capacity measure, which can
be thought of as a scale-sensitive version of the VC dimension, is the fat shattering
dimension [286, 6]. For further details, cf. Chapters 5 and 12.

Whilst it will be difficult for the non-expert to appreciate the results of VC theory
in this chapter, we will nevertheless briefly describe an example of a VC bound:VC Bound

7. The risk-based approach to machine learning has its roots in statistical decision theory
[582, 166, 43]. In that context, f (x) is thought of as an action, and the loss function measures
the loss incurred by taking action f (x) upon observing x when the true output (state of
nature) is y.

Like many fields of statistics, decision theory comes in two flavors. The present approach
is a frequentist one. It considers the risk as a function of the distribution P and the decision
function f . The Bayesian approach considers parametrized families PΘ to model the distri-
bution. Given a prior over Θ (which need not in general be a finite-dimensional vector),
the Bayes risk of a decision function f is the expected frequentist risk, where the expectation
is taken over the prior. Minimizing the Bayes risk (over decision functions) then leads to
a Bayes decision function. Bayesians thus act as if the parameter Θ were actually a random
variable whose distribution is known. Frequentists, who do not make this (somewhat bold)
assumption, have to resort to other strategies for picking a decision function. Examples
thereof are considerations like invariance and unbiasedness, both used to restrict the class
of decision rules, and the minimax principle. A decision function is said to be minimax if
it minimizes (over all decision functions) the maximal (over all distributions) risk. For a
discussion of the relationship of these issues to VC theory, see Problem 5.9.


